Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Samaderin B and C from Samadera indica

R. Malathi,^a S. S. Rajan,^a* G. Suresh,^b G. N. Krishnakumari^b and G. Gopalakrishnan^c

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^bSPIC Science Foundation, Guindy, Chennai 600 032, India, and ^cSchering-Plough Ltd, Singpore Branch, Singapore 638408 Correspondence e-mail: ssrajansai@yahoo.com

Received 23 May 2003 Accepted 2 June 2003 Online 12 July 2003

Samaderin B, or (1R,2S,5R,5aR,7aS,11S,11aS,11bR,14S)-1,7,-7a,11,11a,11b-hexahydro-1,11-dihydroxy-8,11a,14-trimethyl-2*H*-5a,2,5-(methanoxymetheno)naphth[1,2-*d*]oxepine-4,6,10-(5*H*)-trione, C₁₉H₂₂O₇, and samaderin C, or (1R,2S,5R,5aR,-7aS,10S,11S,11aS,11bR,14S)-7,7a,10,11,11a,11b-hexahydro-1,10,11-trihydroxy-8,11a,14-trimethyl-2*H*-5a,2,5-(methanoxymetheno)naphth[1,2-*d*]oxepine-4,6(1*H*,5*H*)-dione, C₁₉H₂₄O₇, were isolated from the seed kernels of *Samadera indica* and were shown to exhibit antifeedant activity against *Spodoptera litura* third-instar larvae. The replacement of the carbonyl group in samaderin B by a hydroxy group in samaderin C causes conformational changes at the substitution site, but the overall conformation is not affected; however, the compounds pack differently in the crystal lattice.

Comment

Samaderin B and C, (I) and (II), respectively, were extracted from the seed kernels of *Samadera indica*. Compounds (I) and (II) belong to the quassinoid class (Polonsky, 1973, 1985), a diverse group of structurally complex and highly oxygenated lactones (δ -lactones in C₂₀ and γ -lactones in C₁₉ compounds) that generally exhibit antifeedant and insecticidal (Leskinen *et al.*, 1984) activities similar to those of limonoids from neem.

Compounds (I) and (II) exhibit antifeedant activity against *Spodoptera litura* third-instar larvae (Govindachari *et al.*, 2001). We have carried out a crystallographic study of these

compounds as part of our work on the structures of ecofriendly bioinsecticides. Chemically, (I) and (II) differ in the substitution at the C2-atom position, *viz*. a carbonyl group on atom C2 in (I) and a hydroxy group in (II) (Fig. 1). The compounds both crystallize in space group $P2_12_12_1$, but they have different unit-cell parameters.

The present study shows that the bond lengths and angles in both structures are close to those observed for other quassinoids (Onan & McPhail, 1978; Suong et al., 1982; Chan et al., 1992; Zukerman-Schpector et al., 1994; Kabaleeswaran et al., 2000). In (II), the hydroxy groups on atoms C1 and C2 are staggered with respect to one another, as described by the O1-C1-C2-O2 torsion angle of 77.3 (2)°. The hydroxy group on atom C1 is in a (-)-antiperiplanar conformation (Klyne & Prelog, 1960) with respect to the C2-C3 bond $[C3-C2-C1-O1 = -156.5 (2)^{\circ}]$, while the hydroxy group on atom C2 is (+)-anticlinal with respect to the C3-C4 bond $[C4-C3-C2-O2 = 131.9 (3)^{\circ}]$. In (I), the hydroxy and carbonyl groups attached to atoms C1 and C2, respectively, are nearly in an eclipsed conformation [O1-C1-C2- $O2 = 12.0 (9)^{\circ}$]. The hydroxy group on atom C1 assumes a (-)-antiperiplanar conformation with respect to the C2-C3 bond $[C3-C2-C1-O1 = -166.4 (6)^{\circ}]$. The hydroxy groups on atoms C1 and C11 of both molecules are in a β orientation, and the hydroxy group on atom C2 of (II) is in an α orientation. In both compounds, the C19 methyl group is in a β orientation, while atom C17 is in an α orientation. The

Figure 1

ORTEPIII (Burnett & Johnson, 1996) views of (a) (I) and (b) (II), showing displacement ellipsoids at the 30% probability level and the atomic numbering schemes.

 γ -lactone ring, *E*, and the oxymethylene bridge attached to ring *C* are in α and β orientations, respectively. When the two molecules are superimposed, the other parts of the molecules show negligible conformational differences.

Figure 2

(a) The packing of (I) in the crystal lattice. Atoms marked with an asterisk (*), dollar sign (\$) or hash (#) are at the symmetry positions (1 + x, y, z), $(\frac{1}{2} - x, 1 - y, z - \frac{1}{2})$ and $(\frac{3}{2} + x, \frac{3}{2} - y, 1 - z)$, respectively. (b) The packing of (II) in the crystal lattice. Atoms marked with an asterisk (*), hash (#) or plus sign (+) are at the symmetry positions $(-x, y - \frac{1}{2}, \frac{1}{2} - z)$, (x - 1, y, z) and $(1 - x, y - \frac{1}{2}, \frac{1}{2} - z)$, respectively. For clarity, H atoms bonded to C atoms have been omitted from both figures.

In both molecules, ring A is in a sofa conformation $[Q_T = 0.495 (7) \text{ Å}, \theta = 46.5 (9)^\circ \text{ and } \varphi_2 = -43 (1)^\circ \text{ in (I), and}$ $Q_T = 0.491$ (2) Å, $\theta = 46.6$ (3)° and $\varphi_2 = -54.5$ (4)° in (II); Cremer & Pople, 1975], ring B is in a highly distorted chair conformation $[Q_T = 0.541 (7) \text{ Å}, \ \theta = 18.9 (8)^\circ \text{ and } \varphi_2 =$ $-32 (2)^{\circ}$ in (I), and $Q_T = 0.536 (2)$ Å, $\theta = 20.4 (2)^{\circ}$ and $\varphi_2 =$ $-47.2(7)^{\circ}$ in (II)] and ring C assumes a distorted chair conformation $[Q_T = 0.733 (7) \text{ Å}, \ \theta = 22.5 (5)^\circ \text{ and } \varphi_2 =$ $-84 (1)^{\circ}$ in (I), and $Q_T = 0.718 (2) \text{ \AA}, \theta = 28.1 (2)^{\circ}$ and $\varphi_2 =$ $-80.8 (4)^{\circ}$ in (II)]. The five-membered ring D adopts a halfchair conformation $[q_2 = 0.452 (7) \text{ Å} \text{ and } \varphi_2 = -51.9 (8)^\circ \text{ in}$ (I), and $q_2 = 0.439$ (2) Å and $\varphi_2 = 164.0$ (3)° in (II)], with atoms C8 and C14 deviating from the least-squares plane of atoms C13, O13 and C16. The γ -lactone ring, E, adopts a conformation intermediate between half-chair and envelope in both compounds $[q_2 = 0.434 \ (6) \text{ Å and } \varphi_2 = 149.7 \ (7)^\circ \text{ in (I)},$ and $q_2 = 0.443$ (2) Å and $\varphi_2 = 153.7$ (3)° in (II)]. In both molecules, the A/B, B/C and C/D rings are trans-fused.

The crystal packing is stabilized by both inter- and intramolecular hydrogen bonds (Tables 1 and 2). An intramolecular O11-H11...O13 hydrogen bond in (I) forms a ring graph-set motif (Bernstein et al., 1995) of S(6), while an intramolecular O11-H11···O1 interaction in (II) forms an S(7) ring. In (I), an intermolecular O1-H1···O15($\frac{1}{2}$ +x, $\frac{3}{2} - y$, 1 - z) hydrogen bond links the molecules into C(9) chains, which run along [100] and are generated by the 2_1 screw axis along $(x, \frac{3}{4}, \frac{1}{2})$. In addition, there are C-H···O hydrogen bonds involving methine atom H12 and methylene atom H17A, which interact with a common acceptor, namely atom O7 at $\left(-\frac{1}{2}-x, 1-y, z-\frac{1}{2}\right)$. This three-centered hydrogen bond generates a graph-set motif of $R_2^1(6)$. Compound (II) is similar to (I) in that an intermolecular O1-H1···O15 $(-x, y - \frac{1}{2}, \frac{1}{2} - z)$ hydrogen bond links the molecules into chains, but these run along [010] and are generated by a 2_1 screw axis along $\left(-\frac{1}{2}, y, \frac{1}{4}\right)$. Another O2-H2···O11(x - 1, y, z) hydrogen bond links the molecules into C(8) chains that run along the [100] direction. These two intermolecular O-H···O hydrogen bonds in combination generate a two-dimensional network in (II), in which a ring graph-set motif of $R_5^5(27)$ can be detected (Fig. 2).]

Experimental

Compounds (I) and (II) were isolated from the seed kernels of *Samadera indica* according to the procedure described by Govindachari *et al.* (2001).

Samaderin B, (I)

Crystal data	
$C_{19}H_{22}O_7$	Cu Ka radiation
$M_r = 362.37$	Cell parameters from 25
Orthorhombic, $P2_12_12_1$	reflections
a = 10.342 (4) Å	$\theta = 15 - 30^{\circ}$
b = 13.328 (7) Å	$\mu = 0.94 \text{ mm}^{-1}$
c = 11.956 (9) Å	T = 293 (2) K
V = 1648.0 (16) Å ³	Rod, colorless
Z = 4	$0.30 \times 0.20 \times 0.10 \text{ mm}$
$D_x = 1.460 \text{ Mg m}^{-3}$	

organic compounds

Data collection

Enraf–Nonius CAD-4	$\theta_{\rm max} = 72.0^{\circ}$
Non-profiled $\omega/2\theta$ scans	$ \begin{array}{l} n = -12 \rightarrow 12 \\ k = 0 \rightarrow 16 \end{array} $
1807 measured reflections	$l = 0 \rightarrow 14$
1741 independent reflections 1203 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.060$	3 standard reflections every 200 reflections intensity decay: 1%
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.1269P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.074$	+ 0.1667P]
$w\bar{R}(F^2) = 0.208$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$

w S = 1.061741 reflections 238 parameters H-atom parameters constrained

Table 1

Hydrogen-bonding geometry (Å, °) for (I).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O11-H11···O13	0.82	2.11	2.766 (8)	136
$O1-H1\cdots O15^i$	0.82	2.45	3.252 (8)	168
C12−H12···O7 ⁱⁱ	0.98	2.58	3.468 (10)	151
$C17-H17A\cdots O7^{ii}$	0.96	2.55	3.364 (11)	143

Symmetry codes: (i) $\frac{1}{2} + x, \frac{3}{2} - y, 1 - z$; (ii) $-\frac{1}{2} - x, 1 - y, z - \frac{1}{2}$.

Samaderin C, (II)

Crystal data

C19H24O7 $M_r = 364.38$ Orthorhombic, $P2_12_12_1$ a = 7.5278 (16) Åb = 12.418(3) Å c = 18.037 (4) Å $V = 1686.2 (7) \text{ Å}^3$ Z = 4 $D_x = 1.435 \text{ Mg m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer Non-profiled $\omega/2\theta$ scans 1846 measured reflections 1846 independent reflections 1660 reflections with $I > 2\sigma(I)$ $\theta_{\rm max} = 71.8^\circ$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.033$ wR(F²) = 0.103 S = 1.031846 reflections 240 parameters H-atom parameters constrained

Cu Ka radiation Cell parameters from 25 reflections $\theta = 15 - 30^{\circ}$ $\mu = 0.91 \text{ mm}^{-1}$ T = 293 (2) KRod, colorless $0.25 \times 0.15 \times 0.15$ mm

 $\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.42 \ {\rm e} \ {\rm \AA}^{-3}$

 $h = 0 \rightarrow 9$ $k = 0 \rightarrow 14$ $l = 0 \rightarrow 22$ 3 standard reflections every 200 reflections intensity decay: 2%

$w = 1/[\sigma^2(F_o^2) + (0.0713P)^2]$	
+ 0.2417P]	
where $P = (F_{0}^{2} + 2F_{c}^{2})/3$	
$(\Delta/\sigma)_{\rm max} < 0.001$	
$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$	
Extinction correction: SHEL2	<i>KL</i> 97
Extinction coefficient: 0.0031	(5)

In the absence of suitable anomalous scatters, Friedel equivalents could not be used to determine the absolute structures. Refinement of the Flack (1983) parameters led to inconclusive values (Flack & Bernadinelli, 2000) [0.9(8) in (I) and -0.2(3) in (II)]. The enan-

Table 2

Hydrogen-bonding geometry (Å, °) for (II).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$011 - H11 \cdots 01$	0.82	2.04	2.692 (3)	136
$01 - H1 \cdots 015^{iii}$	0.82	1.99	2.762 (3)	158
$02 - H2 \cdots 011^{iv}$	0.82	2.08	2.802 (3)	147

Symmetry codes: (iii) $-x, y - \frac{1}{2}, \frac{1}{2} - z$; (iv) x - 1, y, z.

tiomers employed in the refined models were chosen to agree with the accepted configuration of quassinoids (Polonsky, 1985). The methyl and hydroxy H atoms were constrained to an ideal geometry $[C-H = 0.96 \text{ Å} \text{ and } O-H = 0.82 \text{ Å}, \text{ with } U_{iso}(H) = 1.5U_{eq}(\text{parent})$ atom)] but were allowed to rotate freely about the C-C and C-O bonds, respectively. All remaining H atoms were placed in idealized positions (C-H = 0.97-0.98 Å) and constrained to ride on their parent atoms, with $U_{iso}(H)$ values equal to $1.2U_{eq}(C)$.

For both compounds, data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

SSR thanks CSIR (India) for financial support and RM thanks CSIR (India) for a Senior Research Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1170). Services for accessing these data are described at the back of the journal.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Chan, K. L., Iitaka, Y., Noguchi, H., Sugiyama, H., Saito, T. & Sankawa, U. (1992). Phytochemistry, 31, 4295-4298.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Flack, H. D. & Bernadinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
- Govindachari, T. R., KrishnaKumari, G. N., Gopalakrishnan, G., Suresh, G., Wesley, S. D. & Sreelatha, T. (2001). Fitoterapia, 72, 568-571.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Kabaleeswaran, V., Malathi, R., Rajan, S. S., Suresh, G. & Narashiman, N. S. (2000). Acta Cryst. C56, 82-84.
- Klyne, W. & Prelog, V. (1960). Experientia, 15, 521-523.
- Leskinen, V., Polonsky, J. & Bhatnagar, S. (1984). J. Chem. Ecol. 10, 1497-1507
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Onan, K. D. & McPhail, A. T. (1978). J. Chem. Res. (S), p. 14.
- Polonsky, J. (1973). Fortschr. Chem. Org. Naturst. 30, 101–150.
- Polonsky, J. (1985). Fortschr. Chem. Org. Naturst. 47, 221-264.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Suong, N.-N., Bhatnagar, S., Polonsky, J., Vuilhorgne, M., Prangé, T. & Pascard, C. (1982). Tetrahedron Lett. 23, 5159–5162.
- Zukerman-Schpector, J., Castellano, E. E., Fho, E. R. & Cursino, V. I. J. (1994). Acta Cryst. C50, 794-797.